enow.com Web Search

  1. Ads

    related to: how to do basic ratios
  2. generationgenius.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Ratio - Wikipedia

    en.wikipedia.org/wiki/Ratio

    Ratio. In mathematics, a ratio (/ ˈreɪʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and ...

  3. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    v. t. e. Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics ...

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    de Moivre. Euler. Fourier. v. t. e. In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.

  7. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Other mnemonics include: All S tations T o C entral [6] All S illy T om C ats [6] A dd S ugar T o C offee [6] All S cience T eachers (are) C razy [7] A S mart T rig C lass [8] All S chools T orture C hildren [5] A wful S tinky T rig C ourse [5] Other easy-to-remember mnemonics are the ACTS and CAST laws.

  8. Odds ratio - Wikipedia

    en.wikipedia.org/wiki/Odds_ratio

    Odds ratio. An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B ...

  9. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    In mathematics, a percentage (from Latin per centum 'by a hundred') is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign (%), [1] although the abbreviations pct., pct, and sometimes pc are also used. [2] A percentage is a dimensionless number (pure number), primarily used for expressing proportions ...

  1. Ads

    related to: how to do basic ratios