enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  4. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Some older textbooks use all commas in the (n + 1)-tuple, for example, [4, 2, 6, 7]. [3] [4] If the starting number is rational, then this process exactly parallels the Euclidean algorithm applied to the numerator and denominator of the number. In particular, it must terminate and produce a finite continued fraction representation of the number.

  5. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.

  6. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz. [3] In symbols, the partial fraction decomposition of a rational fraction of the form where f and g are polynomials, is the expression of the rational fraction as. {\displaystyle {\frac {f (x)} {g (x)}}=p (x)+\sum _ {j} {\frac {f_ {j} (x)} {g_ {j ...

  7. Egyptian fraction - Wikipedia

    en.wikipedia.org/wiki/Egyptian_fraction

    An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction ...

  8. Roman numerals - Wikipedia

    en.wikipedia.org/wiki/Roman_numerals

    The Romans used a duodecimal rather than a decimal system for fractions, as the divisibility of twelve (12 = 2 2 × 3) makes it easier to handle the common fractions of 1 ⁄ 3 and 1 ⁄ 4 than does a system based on ten (10 = 2 × 5).

  9. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    Number Forms is a Unicode block containing Unicode compatibility characters that have specific meaning as numbers, but are constructed from other characters. They consist primarily of vulgar fractions and Roman numerals. In addition to the characters in the Number Forms block, three fractions (¼, ½, and ¾) were inherited from ISO-8859-1 ...