enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factor theorem - Wikipedia

    en.wikipedia.org/wiki/Factor_theorem

    The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .

  3. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r. If the coefficients of P(x) are real or complex numbers, the fundamental theorem of algebra asserts that P(x) has a real or complex root. Using the factor theorem recursively, it results that

  5. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers. The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain.

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas can equivalently be written as for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots. Vieta's system (*) can be solved by Newton's method through an explicit simple ...

  7. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Mathematics. Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [1]

  8. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.

  9. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Relating two numbers and their greatest common divisor. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d.