Search results
Results from the WOW.Com Content Network
The triangle inequality is a defining property of norms and measures of distance. This property must be established as a theorem for any function proposed for such purposes for each particular space: for example, spaces such as the real numbers, Euclidean spaces, the L p spaces (p ≥ 1), and inner product spaces.
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
Mathematical inequality relating inner products and norms. The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) [1][2][3][4] is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely ...
Main parameters and notation. The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c; the semiperimeter s = (a + b + c) / 2 (half the perimeter p); the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as ...
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, [ 1 ] building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. [ 2 ]
Bell's theorem. Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only ...
In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces.Let be a measure space, let < and let and be elements of (). Then + is in (), and we have the triangle inequality ‖ + ‖ ‖ ‖ + ‖ ‖ with equality for < < if and only if and are positively linearly dependent; that is, = for some or =
Hölder's inequality. In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. Hölder's inequality — Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then for all measurable real - or complex ...