Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method.
Then in the second period by 2/12, in the third by 3/12, in the fourth by 3/12, fifth by 2/12 and at the end of the sixth period reaches its maximum with an increase of 1/12. The steps are 1:2:3:3:2:1 giving a total change of 12/12. Over the next six intervals the quantity reduces in a similar manner by 1, 2, 3, 3, 2, 1 twelfths.
Viète. de Moivre. Euler. Fourier. v. t. e. In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.
The tree is at the intersection of two lines, sometimes called a power point[1] or a crash point. [2] The rule of thirds is a rule of thumb for composing visual images such as designs, films, paintings, and photographs. [3] The guideline proposes that an image should be imagined as divided into nine equal parts by two equally spaced horizontal ...
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial
If the hundreds digit is odd, the number obtained by the last two digits must be 4 times an odd number. 352: 52 = 4 x 13. Add the last digit to twice the rest. The result must be divisible by 8. 56: (5 × 2) + 6 = 16. The last three digits are divisible by 8. [2][3] 34,152: Examine divisibility of just 152: 19 × 8.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
Numeral or number prefixes are prefixes derived from numerals or occasionally other numbers. In English and many other languages, they are used to coin numerous series of words. For example: simplex, duplex (communication in only 1 direction at a time, in 2 directions simultaneously) unicycle, bicycle, tricycle (vehicle with 1 wheel, 2 wheels ...