Search results
Results from the WOW.Com Content Network
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...
Shor proposed multiple similar algorithms for solving the factoring problem, the discrete logarithm problem, and the period-finding problem. "Shor's algorithm" usually refers to the factoring algorithm, but may refer to any of the three algorithms. The discrete logarithm algorithm and the factoring algorithm are instances of the period-finding ...
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form. in O and L-notations. [1] It is a generalization of the special number field sieve: while ...
Decomposition paradigm. A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and usually implies a specific way to organize a program text. Typically the aim of using a decomposition paradigm is to optimize some metric related to program complexity, for example a program's modularity or ...
Pollard's p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest example of an algebraic-group factorisation algorithm. The factors it finds are ones for which ...
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N. Each odd number has such a representation. Indeed, if is a factorization of N, then.