Search results
Results from the WOW.Com Content Network
Spectral flux density. In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric rather than a photometric measure.
The density of the linear momentum of the electromagnetic field is S/c 2 where S is the magnitude of the Poynting vector and c is the speed of light in free space. The radiation pressure exerted by an electromagnetic wave on the surface of a target is given by P r a d = S c . {\displaystyle P_{\mathrm {rad} }={\frac {\langle S\rangle }{\mathrm ...
The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E. In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or ...
Restatement of Newton's law of universal gravitation. In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed ...
Gaussian surface. A cylindrical Gaussian surface is commonly used to calculate the electric charge of an infinitely long, straight, 'ideal' wire. A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. [1]
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...
Yakir Aharonov. David Bohm. The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum-mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic potential ( , ), despite being confined to a region in which both the magnetic field and electric field are zero. [1]
Dimension. M L3 T−3 I−1. In electromagnetism, electric flux is the measure of the electric field through a given surface, [1] although an electric field in itself cannot flow. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the potential.