enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  3. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    For a conjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operator A on a complex Hilbert space H is an conjugate-linear operator A ∗ : H → H with the property:

  4. Reflective subcategory - Wikipedia

    en.wikipedia.org/wiki/Reflective_subcategory

    In mathematics, a full subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. [1]: 91 This adjoint is sometimes called a reflector, or localization. [2] Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint.

  5. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Even more general is the concept of adjoint operator for operators on (possibly infinite-dimensional) complex Hilbert spaces. All this is subsumed by the *-operations of C*-algebras . One may also define a conjugation for quaternions and split-quaternions : the conjugate of a + b i + c j + d k {\textstyle a+bi+cj+dk} is a − b i − c j − d ...

  6. Extensions of symmetric operators - Wikipedia

    en.wikipedia.org/wiki/Extensions_of_symmetric...

    An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.

  7. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    Proof that a common eigenbasis implies commutation. Let {| } be a set of orthonormal states (i.e., | =,) that form a complete eigenbasis for each of the two compatible observables and represented by the self-adjoint operators ^ and ^ with corresponding (real-valued) eigenvalues {} and {}, respectively.

  8. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  9. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    For a Hilbert space, T* normally denotes the adjoint of an operator T ∈ B(H), not the transpose, and σ(T*) is not σ(T) but rather its image under complex conjugation. For a self-adjoint T ∈ B(H), the Borel functional calculus gives additional ways to break up the spectrum naturally.