Search results
Results from the WOW.Com Content Network
The seemingly "simple" elementary brain-teaser asks one student "Reasonableness: Marty ate 4/6 of his pizza and Luis ate 5/6 of his pizza. Marty ate more pizza than Luis.
Landau's problems [2] 4: 4: Edmund Landau: 1912 Taniyama's problems [3] 36 – Yutaka Taniyama: 1955 Thurston's 24 questions [4] [5] 24 – William Thurston: 1982 Smale's problems: 18: 14: Stephen Smale: 1998 Millennium Prize Problems: 7: 6 [6] Clay Mathematics Institute: 2000 Simon problems: 15 < 12 [7] [8] Barry Simon: 2000 Unsolved Problems ...
A. 2 + 6 + 6 = 14 B. 3 + 3 + 8 = 14. In case 'A', there is no 'eldest child': two children are aged six (although one could be a few minutes or around 9 to 12 months older and they still both be 6). Therefore, when told that one child is the eldest, the census-taker concludes that the correct solution is 'B'. [3]
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables.
For example, multiplication by 2 on Z/21Z has cycle decomposition (0)(1,2,4,8,16,11)(3,6,12)(5,10,20,19,17,13)(7,14)(9,18,15), so the sign of this permutation is (1)(−1)(1)(−1)(−1)(1) = −1 and the Jacobi symbol (2|21) is −1. (Note that multiplication by 2 on the units mod 21 is a product of two 6-cycles, so its sign is 1.
There are (up to symmetries) only two non-trivial multicolour Ramsey numbers for which the exact value is known, namely R(3, 3, 3) = 17 and R(3, 3, 4) = 30. [ 1 ] Suppose that we have an edge colouring of a complete graph using 3 colours, red, green and blue.
The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...
The SGP is the Steiner system S(2,4,32) because 32 golfers are divided into groups of 4 and both the group and week assignments of any 2 golfers can be uniquely identified. Soon after the problem was proposed in 1998, a solution for 9 weeks was found and the existence of a solution for 11 weeks was proven to be impossible.