Search results
Results from the WOW.Com Content Network
It is convenient to denote cavity frequencies with a complex number ~ = /, where = (~) is the angular resonant frequency and = (~) is the inverse of the mode lifetime. Cavity perturbation theory has been initially proposed by Bethe-Schwinger in optics [1], and Waldron in the radio frequency domain. [2]
Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. [1] This type of resonance occurs when air is forced in and out of a cavity (the resonance chamber ), causing the air inside to vibrate at a specific natural frequency .
Investigating theories of higher dimensions often involves looking at the 10 dimensional superstring theory and interpreting some of the more obscure results in terms of compactified dimensions. For example, D-branes are seen as compactified membranes from 11D M-theory. Theories of higher dimensions such as 12D F-theory and beyond produce other ...
Pushing a person in a swing is a common example of resonance. The loaded swing, a pendulum, has a natural frequency of oscillation, its resonant frequency, and resists being pushed at a faster or slower rate. A familiar example is a playground swing, which acts as a pendulum. Pushing a person in a swing in time with the natural interval of the ...
The first research into hyperons happened in the 1950s and spurred physicists on to the creation of an organized classification of particles. The term was coined by French physicist Louis Leprince-Ringuet in 1953, [4] [5] and announced for the first time at the cosmic ray conference at Bagnères de Bigorre in July of that year, agreed upon by Leprince-Ringuet, Bruno Rossi, C.F. Powell, William ...
When one electron is removed from an sp 3 orbital, resonance is invoked between four valence bond structures, each of which has a single one-electron bond and three two-electron bonds. Triply degenerate T 2 and A 1 ionized states (CH 4 + ) are produced from different linear combinations of these four structures.
In such a scheme, the negative constitutive parameters are designed to appear around the Mie resonances of the inclusions: the negative effective permittivity is designed around the resonance of the Mie electric dipole scattering coefficient, whereas negative effective permeability is designed around the resonance of the Mie magnetic dipole ...
Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...