Search results
Results from the WOW.Com Content Network
In the Euclidean TSP (see below), the distance between two cities is the Euclidean distance between the corresponding points. In the rectilinear TSP, the distance between two cities is the sum of the absolute values of the differences of their x- and y-coordinates. This metric is often called the Manhattan distance or city-block metric.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The Concorde TSP Solver is a program for solving the travelling salesman problem. It was written by David Applegate , Robert E. Bixby , Vašek Chvátal , and William J. Cook , in ANSI C , and is freely available for academic use.
In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction). The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem ...
In combinatorial optimization, the set TSP, also known as the generalized TSP, group TSP, One-of-a-Set TSP, Multiple Choice TSP or Covering Salesman Problem, is a generalization of the traveling salesman problem (TSP), whereby it is required to find a shortest tour in a graph which visits all specified subsets of the vertices of a graph.
The Steiner traveling salesman problem (Steiner TSP, or STSP) is an extension of the traveling salesman problem. Given a list of cities, some of which are required, and the lengths of the roads between them, the goal is to find the shortest possible walk that visits each required city and then returns to the origin city. [ 1 ]
The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...
Relocation is the process of assigning load addresses for position-dependent code and data of a program and adjusting the code and data to reflect the assigned addresses. [1] [2] Prior to the advent of multiprocess systems, and still in many embedded systems, the addresses for objects are absolute starting at a known location, often zero.