Search results
Results from the WOW.Com Content Network
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Vector field; Tensor field; Differential form; Exterior derivative; Lie derivative; pullback (differential geometry) pushforward (differential) jet (mathematics) Contact (mathematics) jet bundle; Frobenius theorem (differential topology) Integral curve
In differential calculus, the domain-straightening theorem states that, given a vector field on a manifold, there exist local coordinates , …, such that = / in a neighborhood of a point where is nonzero.
The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as Riemannian geometry and general relativity. [original research?]
In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.
In the language of differential geometry, this derivative is a one-form on the punctured plane. It is closed (its exterior derivative is zero) but not exact , meaning that it is not the derivative of a 0-form (that is, a function): the angle θ {\\displaystyle \\theta } is not a globally defined smooth function on the entire punctured plane.
Vertical and horizontal subspaces for the Möbius strip. The Möbius strip is a line bundle over the circle, and the circle can be pictured as the middle ring of the strip. . At each point on the strip, the projection map projects it towards the middle ring, and the fiber is perpendicular to the middle ri
In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form.