enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dini's theorem - Wikipedia

    en.wikipedia.org/wiki/Dini's_theorem

    The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous. The continuity of the limit function cannot be inferred from the other hypothesis (consider x n {\displaystyle x^{n}} in [ 0 , 1 ] {\displaystyle [0,1]} .)

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...

  4. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in Xx 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.

  5. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

  6. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  7. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    The theorem states that if you have an infinite matrix of non-negative real numbers , such that the rows are weakly increasing and each is bounded , where the bounds are summable < then, for each column, the non decreasing column sums , are bounded hence convergent, and the limit of the column sums is equal to the sum of the "limit column ...

  8. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    [1] [3] [4] Other more technical rate definitions are needed if the sequence converges but | + | | | = [5] or the limit does not exist. [1] This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed.

  9. One-sided limit - Wikipedia

    en.wikipedia.org/wiki/One-sided_limit

    The function () = + ⁡ (), where ⁡ denotes the sign function, has a left limit of , a right limit of +, and a function value of at the point =. In calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right.