Search results
Results from the WOW.Com Content Network
The mean piston speed is the average speed of the piston in a reciprocating engine. It is a function of stroke and RPM. There is a factor of 2 in the equation to account for one stroke to occur in 1/2 of a crank revolution (or alternatively: two strokes per one crank revolution) and a '60' to convert seconds from minutes in the RPM term.
Below is an animation of the piston motion equations with the same values of rod length and crank radius as in the graphs above. Piston motion animation with the various half strokes from the graph above (using the same color code)
For paddle ships, the Admiralty rule was that the piston speed in feet per minute was taken as 129.7 × (stroke) 1/3.38. [28] [29] For screw steamers, the intended piston speed was used. [29] The stroke (or length of stroke) was the distance moved by the piston measured in feet.
For projectiles in unpowered flight, its velocity is highest at leaving the muzzle and drops off steadily because of air resistance.Projectiles traveling less than the speed of sound (about 340 m/s (1,100 ft/s) in dry air at sea level) are subsonic, while those traveling faster are supersonic and thus can travel a substantial distance and even hit a target before a nearby observer hears the ...
Speed has dropped out of the equation, and the only variables are the torque and displacement volume. Since the range of maximum brake mean effective pressures for good engine designs is well established, we now have a displacement-independent measure of the torque-producing capacity of an engine design – a specific torque of sorts.
where is propulsive efficiency (typically 0.65 for wooden propellers, 0.75 metal fixed pitch and up to 0.85 for constant-speed propellers), hp is the engine's shaft horsepower, and is true airspeed in feet per second, weight is in lbs. The metric formula is:
Today piston engines are used almost exclusively on light, general aviation aircraft. The official speed record for a piston plane was held by a modified Grumman F8F Bearcat, the Rare Bear, with a speed of 528.315 mph (850.241 km/h) on 21 August 1989 at Reno, Nevada, United States of America.
For example, Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 million foot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even ...