Ads
related to: multiplicative group of complex numbers worksheet and answers key book
Search results
Results from the WOW.Com Content Network
Outside of number theory the simpler notation is often used, though it can be confused with the p-adic integers when n is a prime number. The multiplicative group of integers modulo n, which is the group of units in this ring, may be written as (depending on the author) (/), (/), (/), (/) (for German Einheit, which translates as unit), , or ...
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule = along with the associative, commutative, and distributive laws. Every nonzero complex number has a multiplicative inverse. This makes the complex numbers a field with the real numbers as a subfield.
A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.
n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.
The product and the multiplicative inverse of two roots of unity are also roots of unity. In fact, if x m = 1 and y n = 1, then (x −1) m = 1, and (xy) k = 1, where k is the least common multiple of m and n. Therefore, the roots of unity form an abelian group under multiplication. This group is the torsion subgroup of the circle group.
The circle group is more than just an abstract algebraic object. It has a natural topology when regarded as a subspace of the complex plane. Since multiplication and inversion are continuous functions on , the circle group has the structure of a topological group.
In mathematics, a multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.
Ads
related to: multiplicative group of complex numbers worksheet and answers key book