Search results
Results from the WOW.Com Content Network
The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.
µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...
E F or μ: Although it is not a band quantity, the Fermi level (total chemical potential of electrons) is a crucial level in the band diagram. The Fermi level is set by the device's electrodes. For a device at equilibrium, the Fermi level is a constant and thus will be shown in the band diagram as a flat line. Out of equilibrium (e.g., when ...
In the case of a degenerate semiconductor, an electron from the top of the valence band can only be excited into conduction band above the Fermi level (which now lies in conduction band) since all the states below the Fermi level are occupied states. Pauli's exclusion principle forbids excitation into these occupied states. Thus we observe an ...
In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction band. The valence band, immediately below the forbidden band, is normally very nearly completely occupied. The conduction band, above the Fermi level, is normally nearly completely empty.
Shown is the graphical definition of the Schottky barrier height, Φ B, for an n-type semiconductor as the difference between the interfacial conduction band edge E C and Fermi level E F. Whether a given metal-semiconductor junction is an ohmic contact or a Schottky barrier depends on the Schottky barrier height, Φ B, of the junction.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping. Using band theory, the electron density, is number of electrons per unit volume in the conduction band. For holes, is the number of holes per unit volume in the valence band.
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.