enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  4. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    In this case, the carrier density (in this context, also called the free electron density) can be estimated by: [5] n = N A Z ρ m m a {\displaystyle n={\frac {N_{\text{A}}Z\rho _{m}}{m_{a}}}} Where N A {\displaystyle N_{\text{A}}} is the Avogadro constant , Z is the number of valence electrons , ρ m {\displaystyle \rho _{m}} is the density of ...

  5. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction band. The valence band, immediately below the forbidden band, is normally very nearly completely occupied. The conduction band, above the Fermi level, is normally nearly completely empty.

  6. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  7. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    E F or μ: Although it is not a band quantity, the Fermi level (total chemical potential of electrons) is a crucial level in the band diagram. The Fermi level is set by the device's electrodes. For a device at equilibrium, the Fermi level is a constant and thus will be shown in the band diagram as a flat line. Out of equilibrium (e.g., when ...

  8. Field effect (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Field_effect_(semiconductor)

    The example in the figure shows the Fermi level in the bulk material beyond the range of the applied field as lying close to the valence band edge. This position for the occupancy level is arranged by introducing impurities into the semiconductor.

  9. Fermi surface - Wikipedia

    en.wikipedia.org/wiki/Fermi_surface

    When a material's Fermi level falls in a bandgap, there is no Fermi surface. Fig. 2: A view of the graphite Fermi surface at the corner H points of the Brillouin zone showing the trigonal symmetry of the electron and hole pockets. Materials with complex crystal structures can have quite intricate Fermi surfaces.