Search results
Results from the WOW.Com Content Network
Density system unit unit-code symbol or abbrev. notes sample default conversion combination output units Metric: kilogram per cubic metre: kg/m3 kg/m 3: 1.0 kg/m 3 (1.7 lb/cu yd)
The Raketen Sprenggranate was a 72.9 mm (2.87 in) spin-stabilized rocket with a length of 28 cm (11 in) and a weight of 2.74 kg (6 lb 1 oz). The projectile was similar to the 7.3 cm Propagandawerfer 41 but instead of being filled with propaganda leaflets the Raketen Sprenggranate had an explosive warhead with dual fuzes.
lb/ft 3: ≡ lb/ft 3: ≈ 16.018 463 37 kg/m 3: pound (avoirdupois) per cubic inch lb/in 3: ≡ lb/in 3: ≈ 2.767 990 471 × 10 4 kg/m 3: pound (avoirdupois) per gallon (imperial) lb/gal ≡ lb/gal ≈ 99.776 372 66 kg/m 3: pound (avoirdupois) per gallon (US fluid) lb/gal ≡ lb/gal ≈ 119.826 4273 kg/m 3: slug per cubic foot slug/ft 3: ≡ ...
The IEEE symbol for the cubic foot per second is ft 3 /s. [1] The following other abbreviations are also sometimes used: ft 3 /sec; cu ft/s; cfs or CFS; cusec; second-feet; The flow or discharge of rivers, i.e., the volume of water passing a location per unit of time, is commonly expressed in units of cubic feet per second or cubic metres per second.
The unit used in the US is the foot sea water (fsw), based on standard gravity and a sea-water density of 64 lb/ft 3. According to the US Navy Diving Manual, one fsw equals 0.30643 msw, 0.030 643 bar , or 0.444 44 psi , [ 1 ] [ 2 ] though elsewhere it states that 33 fsw is 14.7 psi (one atmosphere), which gives one fsw equal to about 0.445 psi.
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations.The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.