Search results
Results from the WOW.Com Content Network
SI derived units are units of measurement derived from the seven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem).
= 0.514 77 3 m/s mach number: M: Ratio of the speed to the speed of sound [note 1] in the medium (unitless). ≈ 340 m/s in air at sea level ≈ 295 m/s in air at jet altitudes metre per second (SI unit) m/s ≡ 1 m/s = 1 m/s mile per hour: mph ≡ 1 mi/h = 0.447 04 m/s: mile per minute: mpm ≡ 1 mi/min = 26.8224 m/s: mile per second: mps ≡ ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I
299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
Product of an object's mass and velocity kg⋅m/s L M T −1: vector, extensive Pop: p →: Rate of change of crackle per unit time: the sixth time derivative of position m/s 6: L T −6: vector Pressure gradient: Pressure per unit distance pascal/m L −2 M 1 T −2: vector Temperature gradient