Search results
Results from the WOW.Com Content Network
Langlands's proof of the functional equation for Eisenstein series was 337 pages long. 1983 Trichotomy theorem. Gorenstein and Lyons's proof for the case of rank at least 4 was 731 pages long, and Aschbacher's proof of the rank 3 case adds another 159 pages, for a total of 890 pages. 1983 Selberg trace formula. Hejhal's proof of a general form ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The calendar year has 13 months with 28 days each, divided into exactly 4 weeks (13 × 28 = 364). An extra day added as a holiday at the end of the year (after December 28, i.e. equal to December 31 Gregorian), sometimes called "Year Day", does not belong to any week and brings the total to 365 days.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
On yet another separate branch of development, in the late 1960s, Yves Hellegouarch came up with the idea of associating hypothetical solutions (a, b, c) of Fermat's equation with a completely different mathematical object: an elliptic curve. [7] The curve consists of all points in the plane whose coordinates (x, y) satisfy the relation
Solutions to linear Diophantine equations, such as 26x + 65y = 13, may be found using the Euclidean algorithm (c. 5th century BC). [28] Many Diophantine equations have a form similar to the equation of Fermat's Last Theorem from the point of view of algebra, in that they have no cross terms mixing two letters, without sharing its particular ...
From the first statement, we know that Albert is sure that Bernard doesn't know the birthday, so May and June should be ruled out (the day 19 only appears in May and the day 18 only appears in June).
The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...