Search results
Results from the WOW.Com Content Network
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The multi-fragment (MF) algorithm is a heuristic or approximation algorithm for the travelling salesman problem (TSP) (and related problems). This algorithm is also sometimes called the "greedy algorithm" for the TSP.
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.
It generalises the travelling salesman problem (TSP). It first appeared in a paper by George Dantzig and John Ramser in 1959, [1] in which the first algorithmic approach was written and was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Form the subgraph of G using only the vertices of O: Construct a minimum-weight perfect matching M in this subgraph Unite matching and spanning tree T ∪ M to form an Eulerian multigraph Calculate Euler tour Here the tour goes A->B->C->A->D->E->A. Equally valid is A->B->C->A->E->D->A. Remove repeated vertices, giving the algorithm's output.
The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general guide, if the last few stages of the tour are comparable in length to the first stages, then the tour is reasonable; if they are much greater ...
2-opt. In optimization, 2-opt is a simple local search algorithm for solving the traveling salesman problem.The 2-opt algorithm was first proposed by Croes in 1958, [1] although the basic move had already been suggested by Flood. [2]