Search results
Results from the WOW.Com Content Network
In a non-uniform field, gravitational effects such as potential energy, force, and torque can no longer be calculated using the center of mass alone. In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect.
Figure 1: Tidal interaction between the spiral galaxy NGC 169 and a smaller companion [1]. The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction.
Objects orbiting in space would not remain in orbit if not for the gravitational force, and gravitational fields extend even into the depths of intergalactic space. [5] [6] [7] The dark side of the Moon illuminated by the Sun. The dark (far) side of the Moon receives about the same amount of light from the Sun as the near side.
The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
^ Surface gravity derived from the mass m, the gravitational constant G and the radius r: Gm/r 2. ^ Escape velocity derived from the mass m, the gravitational constant G and the radius r: √ (2Gm)/r. ^ Orbital speed is calculated using the mean orbital radius and the orbital period, assuming a circular orbit. ^ Assuming a density of 2.0
Earth's gravitational field is not uniform. An oblate spheroid is typically used as the idealized Earth, but even if the Earth were spherical and did not rotate, the strength of gravity would not be the same everywhere because density varies throughout the planet.