Search results
Results from the WOW.Com Content Network
In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force with respect to the aerodynamic center on the airfoil . The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer. [1]: Section 5.3 More generally, a ...
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
This leverage is a product of moment arm from the center of gravity and surface area. Correctly balanced in this way, the partial derivative of pitching moment with respect to changes in angle of attack will be negative: a momentary pitch up to a larger angle of attack makes the resultant pitching moment tend to pitch the aircraft back down.
The aerodynamic center, which is the chord-wise location about which the pitching moment is independent of the lift coefficient and the angle of attack. The center of pressure, which is the chord-wise location about which the pitching moment is momentarily zero. On a cambered airfoil, the center of pressure is not a fixed location as it moves ...
The center of pressure of an aircraft is the point where all of the aerodynamic pressure field may be represented by a single force vector with no moment. [3] [4] A similar idea is the aerodynamic center which is the point on an airfoil where the pitching moment produced by the aerodynamic forces is constant with angle of attack. [5] [6] [7]
Clark Y is the name of a particular airfoil profile, widely used in general purpose aircraft designs, and much studied in aerodynamics over the years. The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1]
An alternative is the use of low or null pitching moment airfoils, seen for example in the Horten series of sailplanes and fighters. These use an unusual wing aerofoil section with reflex or reverse camber on the rear or all of the wing. With reflex camber the flatter side of the wing is on top, and the strongly curved side is on the bottom, so ...
The moment equation is the time derivative of the angular momentum: = where M is the pitching moment, and B is the moment of inertia about the pitch axis. Let: =, the pitch rate. The equations of motion, with all forces and moments referred to wind axes are, therefore: