Search results
Results from the WOW.Com Content Network
The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram
Feynman diagram of electron–positron pair production. One must calculate multiple diagrams to get the net cross section. The exact analytic form for the cross section of pair production must be calculated through quantum electrodynamics in the form of Feynman diagrams and results in a complicated function. To simplify, the cross section can ...
The intrinsic quark structure of the target photon beam is revealed by observing characteristic patterns of the scattered electrons in the final state. Figure 1. Electron–photon scattering generic Feynman diagram. The incoming target photon splits into a nearly collinear quark–antiquark pair.
Feynman diagram elements. These actions are represented in the form of visual shorthand by the three basic elements of diagrams: a wavy line for the photon, a straight line for the electron and a junction of two straight lines and a wavy one for a vertex representing emission or absorption of a photon by an electron. These can all be seen in ...
The Initial and Final States of the interaction relate through the so-called scattering matrix . For example, at LEP, e + + e − → e + + e −, or e + + e − → μ + + μ − are processes where the initial state is an electron and a positron colliding to produce an electron and a positron or two muons of opposite charge: the final states.
In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process: e + e − → e + e − {\displaystyle e^{+}e^{-}\rightarrow e^{+}e^{-}} There are two leading-order Feynman diagrams contributing to this interaction: an annihilation process and a scattering process.