Search results
Results from the WOW.Com Content Network
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
Euler's sum of powers conjecture § k = 3, relating to cubes that can be written as a sum of three positive cubes; Plato's number, an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3; Taxicab number, the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways
3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1. The only partition of zero is the empty sum, having no parts. The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part.
For a positive integer n, p(n) is the number of distinct ways of representing n as a sum of positive integers. For the purposes of this definition, the order of the terms in the sum is irrelevant: two sums with the same terms in a different order are not considered to be distinct.
Each positive integer n has 2 n−1 distinct compositions. Bijection between 3 bit binary numbers and compositions of 4 A weak composition of an integer n is similar to a composition of n , but allowing terms of the sequence to be zero: it is a way of writing n as the sum of a sequence of non-negative integers .
Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory
A positive integer that can be written as the sum of two or more consecutive positive integers. A138591: ErdÅ‘s–Nicolas numbers: 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... A number n such that there exists another number m and , =. A194472: Solution to Stepping Stone Puzzle
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.