Search results
Results from the WOW.Com Content Network
In many cases, such as order theory, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary number theory, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)
Indicator function – Mathematical function characterizing set membership; Linear discriminant function – Method used in statistics, pattern recognition, and other fields; Multicollinearity – Linear dependency situation in a regression model; One-hot – Bit-vector representation where only one bit can be set at a time
Such indicators have some special properties. For example, the following statements are all true for an indicator function that is trigonometrically convex at least on an interval (,): [1]: 55–57 [2]: 54–61
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
Indicator function: maps x to either 1 or 0, depending on whether or not x belongs to some subset. Step function: A finite linear combination of indicator functions of half-open intervals. Heaviside step function: 0 for negative arguments and 1 for positive arguments. The integral of the Dirac delta function. Sawtooth wave; Square wave ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. An example of step functions (the red graph).
In mathematics, the term "characteristic function" can refer to any of several distinct concepts: The indicator function of a subset , that is the function 1 A : X → { 0 , 1 } , {\displaystyle \mathbf {1} _{A}\colon X\to \{0,1\},} which for a given subset A of X , has value 1 at points of A and 0 at points of X − A .