Search results
Results from the WOW.Com Content Network
An axon (from Greek ἄξων áxōn, axis) or nerve fiber (or nerve fibre: see spelling differences) is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different ...
Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible in unmyelinated axons (150 m/s compared from 0.5 to 10 m/s). [1]
Association fibers are axons (nerve fibers) that connect cortical areas within the same cerebral hemisphere. [1]In human neuroanatomy, axons within the brain, can be categorized on the basis of their course and connections as association fibers, projection fibers, and commissural fibers. [1]
As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na +) and potassium- (K +)–gated ion channels open and close as the membrane reaches its threshold potential.
Projection fibers consist of efferent and afferent fibers uniting the cortex with the lower parts of the brain and with the spinal cord.In human neuroanatomy, bundles of axons (nerve fibers) called nerve tracts, within the brain, can be categorized by their function into association tracts, projection tracts, and commissural tracts.
The axon primarily carries nerve signals away from the soma and carries some types of information back to it. Many neurons have only one axon, but this axon may—and usually will—undergo extensive branching, enabling communication with many target cells. The part of the axon where it emerges from the soma is called the axon hillock.
One pathway—dorsal column–medial lemniscus pathway—begins with sensation from the periphery being sent via afferent nerve fiber of the dorsal root ganglion (first order neuron) through the spinal cord to the dorsal column nuclei (second order neuron) in the brainstem.
Each gap junction (sometimes called a nexus) contains numerous gap junction channels that cross the plasma membranes of both cells. [11] With a lumen diameter of about 1.2 to 2.0 nm, [2] [12] the pore of a gap junction channel is wide enough to allow ions and even medium-size molecules like signaling molecules to flow from one cell to the next, [2] [13] thereby connecting the two cells' cytoplasm.