Search results
Results from the WOW.Com Content Network
A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
As already remarked, most sources in the topic of probability, including many introductory probability textbooks, solve the problem by showing the conditional probabilities that the car is behind door 1 and door 2 are 1 / 3 and 2 / 3 (not 1 / 2 and 1 / 2 ) given that the contestant initially picks door 1 and the ...
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).
Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.
An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1] If A ( k ) {\displaystyle A(k)} represents the smallest abundant number not divisible by the first k primes then for all ϵ > 0 {\displaystyle \epsilon >0} we have
The following table gives an overview over all RSA numbers. Note that the RSA Factoring Challenge ended in 2007 [ 5 ] and no further prizes will be awarded for factoring the higher numbers. The challenge numbers in white lines are part of the original challenge and are expressed in base 10 , while the challenge numbers in yellow lines are part ...