enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are ...

  5. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...

  6. van der Waals radius - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_radius

    The van der Waals equation of state is the simplest and best-known modification of the ideal gas law to account for the behaviour of real gases: (+ (~)) (~) =, where p is pressure, n is the number of moles of the gas in question and a and b depend on the particular gas, ~ is the volume, R is the specific gas constant on a unit mole basis and T ...

  7. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    The partial volume of a particular gas is a fraction of the total volume occupied by the gas mixture, with unchanged pressure and temperature. In gas mixtures, e.g. air, the partial volume allows focusing on one particular gas component, e.g. oxygen.

  8. Ideal solution - Wikipedia

    en.wikipedia.org/wiki/Ideal_solution

    The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law , respectively, [ 3 ] and the activity coefficient (which measures deviation from ...

  9. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    In his 1803 publication about the quantity of gases absorbed by water, [1] William Henry described the results of his experiments: … water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.