Search results
Results from the WOW.Com Content Network
Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.
Gravitation also explains astronomical phenomena on more modest scales, such as planetary orbits, as well as everyday experience: objects fall; heavy objects act as if they were glued to the ground, and animals can only jump so high. Gravitation was the first interaction to be described mathematically.
Gravitaxis (or geotaxis [1]) is a form of taxis characterized by the directional movement of an organism in response to gravity. [2] There are a few different causes for gravitaxis. Many microorganisms have receptors like statocysts that allow them to sense the direction of gravity and to adjust their orientation accordingly. However ...
The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant (6.67430 x 10-¹¹).
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
In general, their ground states tend towards a prolate shape, [33] although experimental data hint at oblate ground-state shapes in certain nuclei, for example krypton-72. [34] Experiments also suggest that some heavy nuclei, such as barium-144 and radium-224, possess asymmetric pear shapes evidenced by their measured octupole moments.