Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
Assuming a hemoglobin concentration of 15 g/dL and an oxygen saturation of 99%, the oxygen concentration of arterial blood is approximately 200 mL of O 2 per L. The saturation of mixed venous blood is approximately 75% in health. Using this value in the above equation, the oxygen concentration of mixed venous blood is approximately 150 mL of O ...
Differences in the concentrations of ions on opposite sides of a cellular membrane lead to a voltage called the membrane potential. [5] Many ions have a concentration gradient across the membrane, including potassium (K +), which is at a high concentration inside and a low concentration outside the membrane.
Before this point in time, a gradual variation in the concentration of A occurs along an axis, designated x, which joins the original compartments. This variation, expressed mathematically as -dC A /dx, where C A is the concentration of A. The negative sign arises because the concentration of A decreases as the distance x increases.
The concentration of the diffusing species must be low enough that the chemical potential gradient is accurately represented by the concentration gradient (thus, the analogy has limited application to concentrated liquid solutions). When the rate of mass transfer is high or the concentration of the diffusing species is not low, corrections to ...
Types of processes used are reverse osmosis, solvent extraction, magnetic and thermolytic. Depending on the concentration of solutes in the feed (which dictates the necessary concentration of solutes in the draw) and the intended use of the product of the FO process, the addition of a separation step may not be required.
The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane. If there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through ...