enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Franzén introduces Hilbert's tenth problem and the MRDP theorem (Matiyasevich-Robinson-Davis-Putnam theorem) which states that "no algorithm exists which can decide whether or not a Diophantine equation has any solution at all". MRDP uses the undecidability proof of Turing: "... the set of solvable Diophantine equations is an example of a ...

  6. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.

  7. Yuri Matiyasevich - Wikipedia

    en.wikipedia.org/wiki/Yuri_Matiyasevich

    In 1972, at the age of 25, he defended his doctoral dissertation on the unsolvability of Hilbert's tenth problem. [7] From 1974 Matiyasevich worked in scientific positions at LOMI, first as a senior researcher, in 1980 he headed the Laboratory of Mathematical Logic.

  8. List of statements independent of ZFC - Wikipedia

    en.wikipedia.org/wiki/List_of_statements...

    On the one hand, CH implies that there exists a function on the unit square whose iterated integrals are not equal — the function is simply the indicator function of an ordering of [0, 1] equivalent to a well ordering of the cardinal ω 1. A similar example can be constructed using MA.

  9. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    [6] [7] Every Hilbert system is an axiomatic system, which is used by many authors as a sole less specific term to declare their Hilbert systems, [8] [9] [10] without mentioning any more specific terms. In this context, "Hilbert systems" are contrasted with natural deduction systems, [3] in which no axioms are used, only inference rules.