Search results
Results from the WOW.Com Content Network
One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).
For example, Perl and Ruby allow pushing and popping an array from both ends, so one can use push and shift functions to enqueue and dequeue a list (or, in reverse, one can use unshift and pop), [2] although in some cases these operations are not efficient.
The Deque interface extends the Queue interface. [25] Deque creates a double-ended queue. While a regular Queue only allows insertions at the rear and removals at the front, the Deque allows insertions or removals to take place both at the front and the back. A Deque is like a Queue that can be used forwards or backwards, or both at once ...
For the stack, priority queue, deque, and DEPQ types, peek can be implemented in terms of pop and push (if done at same end). For stacks and deques this is generally efficient, as these operations are O (1) in most implementations, and do not require memory allocation (as they decrease the size of the data) – the two ends of a deque each ...
STL also has utility functions for manipulating another random-access container as a binary max-heap. The Boost libraries also have an implementation in the library heap. Python's heapq module implements a binary min-heap on top of a list. Java's library contains a PriorityQueue class, which implements a min-priority-queue as a binary heap.
Some deque implementations use array deques, which allow amortized constant time insertion/removal at both ends, instead of just one end. Goodrich [ 16 ] presented a dynamic array algorithm called tiered vectors that provides O ( n 1/ k ) performance for insertions and deletions from anywhere in the array, and O ( k ) get and set, where k ≥ 2 ...
var x1 = 0; // A global variable, because it is not in any function let x2 = 0; // Also global, this time because it is not in any block function f {var z = 'foxes', r = 'birds'; // 2 local variables m = 'fish'; // global, because it wasn't declared anywhere before function child {var r = 'monkeys'; // This variable is local and does not affect the "birds" r of the parent function. z ...
The nested function technology allows a programmer to write source code that includes beneficial attributes such as information hiding, encapsulation and decomposition.The programmer can divide a task into subtasks which are only meaningful within the context of the task such that the subtask functions are hidden from callers that are not designed to use them.