Search results
Results from the WOW.Com Content Network
Gas properties Std enthalpy change ... a = 1823.9 L 2 kPa/mol 2 b = 0.1154 liter per mole ... log of Benzene vapor pressure.
5.56 × 45 mm NATO bullet muzzle energy density [clarification needed] 0.4: 3.2: battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries [29] 0.4: 1.55: Liquid Nitrogen: 0.349: Water – Enthalpy of Fusion: 0.334: 0.334: battery, Zinc–Bromine flow (ZnBr) [30] 0.27: battery, Nickel–metal hydride (NiMH), High ...
a (L 2 bar/mol 2) b (L/mol) Acetic acid: 17.7098 0.1065 Acetic anhydride: 20.158 0.1263 Acetone: 16.02 0.1124 Acetonitrile: 17.81 0.1168 Acetylene: 4.516 0.0522 Ammonia: 4.225 0.0371 Aniline [2] 29.14 0.1486 Argon: 1.355 0.03201 Benzene: 18.24 0.1193 Bromobenzene: 28.94 0.1539 Butane: 14.66 0.1226 1-Butanol [2] 20.94 0.1326 2-Butanone [2] 19.97 ...
Density, gas phase value ... 1 H hydrogen (H 2) use: 0.08988 g/L: 0 °C, 101.325 kPa CRC (calc. ideal gas) 0.082 g/L: 25 °C, 101.325 kPa ... 1.696 g/L: 1.6074 kg/m 3 ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
The EPA requires that spills or accidental releases into the environment of 10 pounds (4.5 kg) or more of benzene be reported. The U.S. Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit of 1 part of benzene per million parts of air (1 ppm) in the workplace during an 8-hour workday, 40-hour workweek.
In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3, temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa), we have that R air = P 0 /(ρ 0 T 0) = 287.052 874 247 J·kg −1 ·K −1. Then the molar mass of air is computed by M 0 = R/R air = 28.964 917 g/mol. [11]