Search results
Results from the WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function.
The proof of this identity is the same as the standard power-series argument for the corresponding identity for the exponential of real numbers. That is to say, as long as X {\displaystyle X} and Y {\displaystyle Y} commute , it makes no difference to the argument whether X {\displaystyle X} and Y {\displaystyle Y} are numbers or matrices.
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles .
The exponential function converts sums to products: it maps the additive identity 0 to the multiplicative identity 1, and the exponential of a sum is equal to the product of separate exponentials, (+) = .
Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,