Search results
Results from the WOW.Com Content Network
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
Elevated protein (albumin, globulins) may theoretically increase the anion gap but high levels are not usually encountered clinically. Hypoalbuminaemia, which is frequently encountered clinically, will mask an anion gap. As a rule of thumb, a decrease in serum albumin by 1 G/L will decrease the anion gap by 0.25 mmol/L [citation needed]
In acidaemia, the bicarbonate levels rise, so that they can neutralize the excess acid, while the contrary happens when there is alkalaemia. Thus when an arterial blood gas test reveals, for example, an elevated bicarbonate, the problem has been present for a couple of days, and metabolic compensation took place over a blood acidaemia problem.
Diarrhea, in which large amounts of bicarbonate are excreted; Ingestion of poisons such as methanol, ethylene glycol, or excessive aspirin; The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis).
Respiratory alkalosis is a medical condition in which increased respiration elevates the blood pH beyond the normal range (7.35–7.45) with a concurrent reduction in arterial levels of carbon dioxide. [1] [4] This condition is one of the four primary disturbances of acid–base homeostasis. [5]
Acid–base and blood gases are among the few blood constituents that exhibit substantial difference between arterial and venous values. [6] Still, pH, bicarbonate and base excess show a high level of inter-method reliability between arterial and venous tests, so arterial and venous values are roughly equivalent for these. [44]
The result can be detected with high levels of lactate and low levels of bicarbonate. This is usually considered the result of illness but also results from strenuous exercise. The effect on pH is moderated by the presence of respiratory compensation. Lactic acidosis is usually the result of tissue hypoxia which is not the same as arterial hypoxia.
A high anion gap indicates increased concentrations of unmeasured anions by proxy. Elevated concentrations of unmeasured anions like lactate, beta-hydroxybutyrate, acetoacetate, PO 3− 4, and SO 2− 4, which rise with disease or intoxication, cause loss of HCO − 3 due to bicarbonate's activity as a buffer (without a concurrent increase in ...