Search results
Results from the WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
It was named after Richard FitzHugh (1922–2007) [2] who suggested the system in 1961 [3] and Jinichi Nagumo et al. who created the equivalent circuit the following year. [4]In the original papers of FitzHugh, this model was called Bonhoeffer–Van der Pol oscillator (named after Karl-Friedrich Bonhoeffer and Balthasar van der Pol) because it contains the Van der Pol oscillator as a special ...
where I is the intensity or strength of the stimulus in physical units (energy, weight, pressure, mixture proportions, etc.), ψ(I) is the magnitude of the sensation evoked by the stimulus, a is an exponent that depends on the type of stimulation or sensory modality, and k is a proportionality constant that depends on the units used.
Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:
It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:
A multigrid method with an intentionally reduced tolerance can be used as an efficient preconditioner for an external iterative solver, e.g., [7] The solution may still be obtained in () time as well as in the case where the multigrid method is used as a solver.
The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).
Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...