enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    The initial, "prediction" step, starts from a function fitted to the function-values and derivative-values at a preceding set of points to extrapolate ("anticipate") this function's value at a subsequent, new point.

  3. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    By definition, the advantage function is an estimate of the relative value for a selected action. If the output of this function is positive, it means that the action in question is better than the average return, so the possibilities of selecting that specific action will increase. The opposite is true for a negative advantage output. [1]

  7. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  8. Linear prediction - Wikipedia

    en.wikipedia.org/wiki/Linear_prediction

    for 1 ≤ j ≤ p, where R is the autocorrelation of signal x n, defined as = {() ()}, and E is the expected value. In the multi-dimensional case this corresponds to minimizing the L 2 norm. The above equations are called the normal equations or Yule-Walker equations. In matrix form the equations can be equivalently written as

  9. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    ROCm support [1] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Parallel execution (multi node) Actively developed BigDL: Jason Dai (Intel) 2016 Apache 2.0: Yes Apache Spark Scala Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning Center 2013 BSD: Yes Linux, macOS, Windows [3] C++