Search results
Results from the WOW.Com Content Network
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
PyTorch supports various sub-types of Tensors. [28] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...
7 Software for use with Python. ... Download as PDF; Printable version; ... is a multi-threaded tensor library implemented in C++ used in Dynare++. The library allows ...
Numpy is one of the most popular Python data libraries, and TensorFlow offers integration and compatibility with its data structures. [66] Numpy NDarrays, the library's native datatype, are automatically converted to TensorFlow Tensors in TF operations; the same is also true vice versa. [66]
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition.It may be regarded as one type of generalization of the matrix singular value decomposition.
A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.
More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with:
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.