Search results
Results from the WOW.Com Content Network
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .
The Hirotaka graph, with 7 and size 12, is the Harris graph with the smallest order. [1] [2] The first appearance of this graph was in a paper as an example of a non-Hamiltonian, tough graph. [6] Douglas Shaw proved it to be minimal by showing all Eulerian graphs of order 6 or lower were not Hamiltonian and tough.
In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices are connected with arrows and the edges traced "tail-to-head").
Each n-dimensional De Bruijn graph is the line digraph of the (n – 1)-dimensional De Bruijn graph with the same set of symbols. [4] Each De Bruijn graph is Eulerian and Hamiltonian. The Euler cycles and Hamiltonian cycles of these graphs (equivalent to each other via the line graph construction) are De Bruijn sequences.
Every graph has a cycle basis in which every cycle is an induced cycle. In a 3-vertex-connected graph, there always exists a basis consisting of peripheral cycles, cycles whose removal does not separate the remaining graph. [4] [5] In any graph other than one formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.
Fleischner’s research focuses mainly on graph theoretical topics such as hamiltonian and eulerian graphs. One of his main achievements is the proof of the theorem according to which the square of every two-connected graph has a Hamiltonian cycle. This result (now known as Fleischner's theorem) had been submitted in 1971 and was published in 1974.
An Eulerian path is a walk that uses every edge of a graph exactly once. An Eulerian circuit (also called an Eulerian cycle or an Euler tour) is a closed walk that uses every edge exactly once. An Eulerian graph is a graph that has an Eulerian circuit. For an undirected graph, this means that the graph is connected and every vertex has even degree.