Search results
Results from the WOW.Com Content Network
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals.
Low hydrogen annealing, commonly known as "baking" is a heat treatment in metallurgy for the reduction or elimination of hydrogen in a material to prevent hydrogen embrittlement. Hydrogen embrittlement is the hydrogen-induced cracking of metals, particularly steel which results in degraded mechanical properties such as plasticity, ductility and ...
Hydrogen embrittlement – Reduction in ductility of a metal exposed to hydrogen; Ozone cracking – Cracks in many different elastomers due to ozone attack; Polymer degradation – Alteration in the polymer properties under the influence of environmental factors; Season cracking – Form of stress-corrosion cracking of brass cartridge cases
Embrittled pinch roller. Embrittlement is a significant decrease of ductility of a material, which makes the material brittle.Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition.
Hydrogen embrittlement may occur as a side effect of electroplating processes. Delayed failure is the fracture of a component under stress after an elapsed time, is a characteristic feature of hydrogen embrittlement (2). Hydrogen entry into the material may be effected during plating, pickling, phosphating, melting, casting or welding.
HIC or HAC - hydrogen induced or hydrogen assisted cracking is a real weldability concern that must be addressed in HY-80 steels. Hydrogen embrittlement is a high risk under all conditions for HY-80 and falls into zone 3 for the AWS method. [19] HAC/HIC can occur in either the Fusion Zone or the Heat Affected Zone. [20]
Different types of crack growth (e.g. fatigue, stress corrosion cracking, hydrogen embrittlement) produce characteristic features on the surface, which can be used to help identify the failure mode. The overall pattern of cracking can be more important than a single crack, however, especially in the case of brittle materials like ceramics and ...
Hydrogen lowers tensile ductility in many materials. In ductile materials, like austenitic stainless steels and aluminium alloys, no marked embrittlement may occur, but may exhibit significant lowering in tensile ductility (% elongation or % reduction in area) in tensile tests.