Search results
Results from the WOW.Com Content Network
The fractional quantum Hall effect (FQHE) is a collective behavior in a 2D system of electrons. In particular magnetic fields, the electron gas condenses into a remarkable liquid state, which is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures.
The quantum Hall effect is referred to as the integer or fractional quantum Hall effect depending on whether ν is an integer or fraction, respectively. The striking feature of the integer quantum Hall effect is the persistence of the quantization (i.e. the Hall plateau) as the electron density is varied.
Arise in a two-dimensional system subject to a large magnetic field, most famously those systems that exhibit the fractional quantum Hall effect. [4] electron Configuron [5] An elementary configurational excitation in an amorphous material which involves breaking of a chemical bond Cooper pair: A bound pair of two electrons electron Dirac electron
In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall effect, where the constituent particles are electrons but the quasiparticles carry fractions of the electron charge.
Fractional excitons are a class of quantum particles discovered in bilayer graphene systems under the fractional quantum Hall effect. These excitons form when electrons and holes bind in a two-dimensional material separated by an insulating layer of hexagonal boron nitride. When exposed to strong magnetic fields, these systems display ...
Fractional quantum Hall state: A state with fractionally charged quasiparticles. Hall resistance is quantized to fractional multiples of resistance quantum. Quantum spin Hall state: a theoretical phase that may pave the way for the development of electronic devices that dissipate less energy and generate less heat. This is a derivative of the ...
Fractional quantum Hall effect (physics) Franssen effect (acoustics) (sound perception) Franz–Keldysh effect (condensed matter) (electronic engineering) (electronics) (optics) (optoelectronics) Free surface effect (fluid mechanics) Front projection effect (film production) Fujiwhara effect (tropical cyclone meteorology) (vortices)
The fractional quantum Hall effect of electrons is thus explained as the integer quantum Hall effect of composite fermions. [5] It results in fractionally quantized Hall plateaus at =, with given by above quantized values. These sequences terminate at the composite fermion Fermi sea.