Search results
Results from the WOW.Com Content Network
The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...
In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.
Bernstein polynomials approximating a curve. In the mathematical field of numerical analysis, a Bernstein polynomial is a polynomial expressed as a linear combination of Bernstein basis polynomials.
In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...
The Hermite formula is applied to each interval (, +) separately. The resulting spline will be continuous and will have continuous first derivative. Cubic polynomial splines can be specified in other ways, the Bezier cubic being the most common. However, these two methods provide the same set of splines, and data can be easily converted between ...
A Bézier curve is also a polynomial curve definable using a recursion from lower-degree curves of the same class and encoded in terms of control points, but a key difference is that all terms in the recursion for a Bézier curve segment have the same domain of definition (usually [,]), whereas the supports of the two terms in the B-spline ...
The geometry of a single bicubic patch is thus completely defined by a set of 16 control points. These are typically linked up to form a B-spline surface in a similar way as Bézier curves are linked up to form a B-spline curve. Simpler Bézier surfaces are formed from biquadratic patches (m = n = 2), or Bézier triangles.
An example Bézier triangle with control points marked. A cubic Bézier triangle is a surface with the equation (,,) = (+ +) = + + + + + + + + +where α 3, β 3, γ 3, α 2 β, αβ 2, β 2 γ, βγ 2, αγ 2, α 2 γ and αβγ are the control points of the triangle and s, t, u (with 0 ≤ s, t, u ≤ 1 and s + t + u = 1) are the barycentric coordinates inside the triangle.