Search results
Results from the WOW.Com Content Network
The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i]. Thus all the longest common substrings would be, for each i in ret, S[(ret[i]-z)..(ret[i])]. The following tricks can be used to reduce the memory usage of an implementation:
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Python has many different implementations of the spearman correlation statistic: it can be computed with the spearmanr function of the scipy.stats module, as well as with the DataFrame.corr(method='spearman') method from the pandas library, and the corr(x, y, method='spearman') function from the statistical package pingouin.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
The Hurst exponent, H, is defined in terms of the asymptotic behaviour of the rescaled range as a function of the time span of a time series as follows; [6] [7] E [ R ( n ) S ( n ) ] = C n H as n → ∞ , {\displaystyle \mathbb {E} \left[{\frac {R(n)}{S(n)}}\right]=Cn^{H}{\text{ as }}n\to \infty \,,} where
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression.
When sampling a function of variables, the range of each variable is divided into equally probable intervals. sample points are then placed to satisfy the Latin hypercube requirements; this forces the number of divisions, , to be equal for each variable. This sampling scheme does not require more samples for more dimensions (variables); this ...
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\displaystyle f} , mean μ {\displaystyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to