Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
In naive set theory, a set is described as a well-defined collection of objects. These objects are called the elements or members of the set. Objects can be anything: numbers, people, other sets, etc. For instance, 4 is a member of the set of all even integers. Clearly, the set of even numbers is infinitely large; there is no requirement that a ...
Set theory begins with a fundamental binary relation between an object o and a set A. If o is a member (or element) of A, the notation o ∈ A is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8]
The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive. Every non-empty set is an injective object in Set.
Certain types of objects from other areas of mathematics are equivalent to families of sets, in that they can be described purely as a collection of sets of objects of some type: A hypergraph, also called a set system, is formed by a set of vertices together with another set of hyperedges, each of which may be an arbitrary set. The hyperedges ...
The collection of all algebraic structures of a given type will usually be a proper class. Examples include the class of all groups, the class of all vector spaces, and many others. In category theory, a category whose collection of objects forms a proper class (or whose collection of morphisms forms a proper class) is called a large category.
This is a category with a collection of objects A, B, C and collection of morphisms denoted f, g, g ∘ f, and the loops are the identity arrows. This category is typically denoted by a boldface 3 . In mathematics , a category (sometimes called an abstract category to distinguish it from a concrete category ) is a collection of "objects" that ...
According to RBC theory, we are able to recognize objects by separating them into geons (the object's main component parts). Biederman suggested that geons are based on basic 3-dimensional shapes (cylinders, cones, etc.) that can be assembled in various arrangements to form a virtually unlimited number of objects. [2]