Search results
Results from the WOW.Com Content Network
Stabilizing selection (not to be confused with negative or purifying selection [1] [2]) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time ...
The K a /K s ratio is used to infer the direction and magnitude of natural selection acting on protein coding genes. A ratio greater than 1 implies positive or Darwinian selection (driving change); less than 1 implies purifying or stabilizing selection (acting against change); and a ratio of exactly 1 indicates neutral (i.e. no) selection.
Selection can be divided into three classes, on the basis of its effect on allele frequencies: directional, stabilizing, and disruptive selection. [103] Directional selection occurs when an allele has a greater fitness than others, so that it increases in frequency, gaining an increasing share in the population.
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to oftentimes lead to sympatric speciation through a phyletic gradualism mode of evolution. Disruptive selection can be caused or influenced by ...
In natural selection, negative selection [1] or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations.
Polymorphism can be maintained by selection favoring the heterozygote, and this mechanism is used to explain the occurrence of some kinds of genetic variability. A common example is the case where the heterozygote conveys both advantages and disadvantages, while both homozygotes convey a disadvantage.
Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. [1]
Biological constraints are factors which make populations resistant to evolutionary change. One proposed definition of constraint is "A property of a trait that, although possibly adaptive in the environment in which it originally evolved, acts to place limits on the production of new phenotypic variants."