Search results
Results from the WOW.Com Content Network
Another formula for calculating the GFR is the one developed by the Modification of Diet in Renal Disease Study Group. [24] Most laboratories in Australia, [25] and the United Kingdom now calculate and report the estimated GFR along with creatinine measurements and this forms the basis of diagnosis of chronic kidney disease.
This is the numerator in the equation. The denominator is the total amount of sodium filtered by the kidneys. This is calculated by multiplying the plasma sodium concentration by the glomerular filtration rate (GFR) calculated using creatinine filtration. The flow rates then cancel out, simplifying to the standard equation: [1]
There are several different techniques used to calculate or estimate the glomerular filtration rate (GFR or eGFR). The above formula only applies for GFR calculation when it is equal to the clearance rate. The normal range of GFR, adjusted for body surface area, is 100–130 average 125 (mL/min)/(1.73 m 2) in men and 90–120 (mL/min)/(1.73 m 2 ...
In renal physiology, the filtration fraction is the ratio of the glomerular filtration rate (GFR) over the renal plasma flow (RPF). Filtration Fraction, FF = GFR/RPF, or =. The filtration fraction, therefore, represents the proportion of the fluid reaching the kidneys that passes into the renal tubules. It is normally about 20%.
The above equation makes clear the relationship between mass removal and clearance. It states that (with a constant mass generation) the concentration and clearance vary inversely with one another. If applied to creatinine (i.e. creatinine clearance ), it follows from the equation that if the serum creatinine doubles the clearance halves and ...
Para-aminohippurate (PAH) clearance is a method used in renal physiology to measure renal plasma flow, which is a measure of renal function. [citation needed]PAH is completely removed from blood that passes through the kidneys (PAH undergoes both glomerular filtration and tubular secretion), and therefore the rate at which the kidneys can clear PAH from the blood reflects total renal plasma flow.
Algorithms to estimate GFR from creatinine concentration and other parameters are discussed in the renal function article. Unfortunately, the MDRD Study equation was developed in people with chronic kidney disease, and its major limitations are imprecision and systematic underestimation of measured GFR (bias) at higher/normal values. [20]
Diagram showing the basic physiologic mechanisms of the kidney. The renal clearance ratio or fractional excretion is a relative measure of the speed at which a constituent of urine passes through the kidneys.