Search results
Results from the WOW.Com Content Network
Quantum illumination is a paradigm for target detection that employs quantum entanglement between a signal electromagnetic mode and an idler electromagnetic mode, as well as joint measurement of these modes. The signal mode is propagated toward a region of space, and it is either lost or reflected, depending on whether a target is absent or ...
One method uses scattered light from a free-electron laser. This method converts the light to quasi-monochromatic pseudo-thermal light. [9] Another method known as interaction-free imaging is used to locate an object without absorbing photons. [10] One more method of quantum imaging is known as ghost imaging.
Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DFT), molecular mechanics or semi-empirical quantum chemistry methods .
The quantum pendulum; The three-dimensional potentials The rotating system The linear rigid rotor; The symmetric top; The particle in a spherically symmetric potential. The hydrogen atom or hydrogen-like atom e.g. positronium; The hydrogen atom in a spherical cavity with Dirichlet boundary conditions [4] The Mie potential [5] The Hooke's atom ...
In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor, which has quantized energy levels, uses quantum coherence or entanglement to improve measurements beyond what can be done with classical sensors. [4] There are four criteria for solid-state quantum sensors: [4]
A pure quantum state is a state that can not be written as a probabilistic mixture, or convex combination, of other quantum states. [5] There are several equivalent characterizations of pure states in the language of density operators. [9]: 73 A density operator represents a pure state if and only if:
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues.Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures).