enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    By performing row operations, one can check that the reduced row echelon form of this augmented matrix is [|] = []. One can think of each row operation as the left product by an elementary matrix . Denoting by B the product of these elementary matrices, we showed, on the left, that BA = I , and therefore, B = A −1 .

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.

  4. Augmented matrix - Wikipedia

    en.wikipedia.org/wiki/Augmented_matrix

    Consider the system of equations + + = + + = + + = The coefficient matrix is = [], and the augmented matrix is (|) = []. Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are an infinite number of solutions.

  5. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process. Also, the pivot of a ...

  6. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    In particular, any two row equivalent matrices have the same row space. Any matrix can be reduced by elementary row operations to a matrix in reduced row echelon form. Two matrices in reduced row echelon form have the same row space if and only if they are equal. This line of reasoning also proves that every matrix is row equivalent to a unique ...

  7. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively. [3]

  8. Rouché–Capelli theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché–Capelli_theorem

    The use of Gaussian elimination for putting the augmented matrix in reduced row echelon form does not change the set of solutions and the ranks of the involved matrices. The theorem can be read almost directly on the reduced row echelon form as follows. The rank of a matrix is the number of nonzero rows in its reduced row echelon form.

  9. Reduction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(mathematics)

    In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively. Often the aim of reduction is to transform a matrix into its "row-reduced echelon form" or "row-echelon form"; this is the goal of Gaussian elimination.