Search results
Results from the WOW.Com Content Network
The sodium–potassium pump is found in many cell (plasma) membranes. Powered by ATP, the pump moves sodium and potassium ions in opposite directions, each against its concentration gradient. In a single cycle of the pump, three sodium ions are extruded from and two potassium ions are imported into the cell.
Potassium is the major cation (K +, a positive ion) inside animal cells, while sodium (Na +) is the major cation outside animal cells.The difference between the concentrations of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential.
The ion pump most relevant to the action potential is the sodium–potassium pump, which transports three sodium ions out of the cell and two potassium ions in. [14] [15] As a consequence, the concentration of potassium ions K + inside the neuron is roughly 30-fold larger than the outside concentration, whereas the sodium concentration outside ...
It is a water-based salt solution containing disodium hydrogen phosphate, sodium chloride and, in some formulations, potassium chloride and potassium dihydrogen phosphate. The buffer helps to maintain a constant pH. The osmolarity and ion concentrations of the solutions are isotonic, meaning they match those of the human body.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
The component ions in a salt can be either inorganic, such as chloride (Cl −), or organic, such as acetate (CH 3 COO −). Each ion can be either monatomic (termed simple ion), such as sodium (Na +) and chloride (Cl −) in sodium chloride, or polyatomic, such as ammonium (NH + 4) and carbonate (CO 2− 3) ions in ammonium carbonate.
Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nig impulse transmission. For example, the sodium-potassium pump uses ATP to pump sodium ions out of the cell and potassium ions into the cell, maintaining a concentration gradient essential for cellular function. Active transport ...
Since Na + ions are in higher concentrations outside of the cell, the concentration and voltage differences both drive them into the cell when Na + channels open. Depolarization opens both the sodium and potassium channels in the membrane, allowing the ions to flow into and out of the axon, respectively.